Bayes estimator

Bayes estimator

Playing 1/13
  • Bayesian Estimator of Talbot "True" 2016 Sv% - animation

    YouTube 00:17
  • Bayesian Estimator for Partial Trajectory Alignment

    YouTube 01:46
  • Bayesian Estimator Eberle GF% - animation

    YouTube 00:25
  • Bayes Estimation

    YouTube 01:01
  • Bayes Estimation 1

    YouTube 02:22
  • Understanding the Normal Distribution [Statistics Tutorial]

    YouTube 03:54
  • What Is The Poisson Probability Distribution Formula Example Explained

    YouTube 03:54
  • Bayes' Theorem - The Simplest Case

    YouTube 05:31
  • Gamma distribution summary

    YouTube 02:09
  • How to find an Expected Value

    YouTube 03:20
  • Probability Density Functions (7 of 7: Uniform distributions)

    YouTube 03:07
  • 38 Mean Squared Error

    YouTube 01:23
  • Beta distribution -- Example 1

    YouTube 03:58

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function. Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation.

Discover in context

This site is not available in the landscape mode.
Please rotate your phone or install our app.